首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   123608篇
  免费   10013篇
  国内免费   16590篇
化学   90146篇
晶体学   1571篇
力学   6149篇
综合类   1279篇
数学   19002篇
物理学   32064篇
  2023年   1019篇
  2022年   1774篇
  2021年   2606篇
  2020年   3536篇
  2019年   3327篇
  2018年   2931篇
  2017年   4151篇
  2016年   4448篇
  2015年   3815篇
  2014年   5290篇
  2013年   9684篇
  2012年   8326篇
  2011年   7362篇
  2010年   6033篇
  2009年   8123篇
  2008年   8387篇
  2007年   8613篇
  2006年   7857篇
  2005年   6908篇
  2004年   6444篇
  2003年   5239篇
  2002年   4523篇
  2001年   3842篇
  2000年   3288篇
  1999年   2919篇
  1998年   2561篇
  1997年   2129篇
  1996年   1844篇
  1995年   1963篇
  1994年   1778篇
  1993年   1397篇
  1992年   1347篇
  1991年   933篇
  1990年   754篇
  1989年   699篇
  1988年   571篇
  1987年   458篇
  1986年   392篇
  1985年   333篇
  1984年   364篇
  1983年   178篇
  1982年   288篇
  1981年   283篇
  1980年   298篇
  1979年   289篇
  1978年   246篇
  1977年   167篇
  1976年   144篇
  1974年   58篇
  1973年   72篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
An easy and delicate approach using cheap carbon source as conductive materials to construct 3D sequential porous structural Na3V2(PO4)3/C(NVP/C)with high performance for cathode materials of sodium ion battery is highly desired.In this paper,the NVP/C with 3D sequential porous structure is constructed by a delicate approach named as“cooking porridge”including evaporation and calcination stages.Especially,during evaporation,the viscosity of NVP/C precursor is optimized by controlling the adding quantity of citric acid,thus leading to a 3D sequential porous structure with a high specific surface area.Furthermore,the NVP/C with a 3D sequential porous structure enables the electrolyte to interior easily,providing more active sites for redox reaction and shortening the diffusion path of electron and sodium ion.Therefore,benefited from its unique structure,as cathode material of sodium ion batteries,the 3D sequential porous structural NVP/C exhibits high specific capacities(115.7,88.9 and 74.4 mA·h/g at current rates of 1,20 and 50 C,respectively)and excellent cycling stability(107.5 and 80.4 mA·h/g are remained at a current density of 1 C after 500 cycles and at a current density of 20 C after 2200 cycles,respectively).  相似文献   
992.
Aggregation-induced emission(AIE)luminogens(AIEgens)with high brightness in aggregates exhibit great potentials in biological imaging,but these AIEgens are seldom applied in super-resolution biological imaging,especially in the imaging by using the structural illumination microscope(SIM).Based on this consideration,we synthesized the donor-acceptor typed AIEgen of DTPA-BTN,which not only owns high brightness in the near-infrared(NIR)emission region from 600 nm to 1000 nm(photoluminescence quantum yield,PLQYs=11.35%),but also displays excellent photo-stability.In addition,AIE nanoparticles based on 4,7-ditriphenylamine-[1,2,5]-thiadiazolo[3,4-c]pyridine(DTPA-BTN)were also prepared with highly emissive features and excellent biocompatibility.Finally,the developed DTPA-BTN-based AIE nanoparticles were applied in the super-resolution cellular imaging via SIM,where much smaller full width at half-maximum values and high signal to noise ratios were obtained,indicating the superior imaging resolution.The results here imply that highly emissive AIEgens or AIE nanoparticles can be promising imaging agents for super-resolution imaging via SIM.  相似文献   
993.
Luminogens with aggregation-induced emission(AIE)characteristics(or AIEgens)have been widely used in various applications due to their excellent luminescent properties in molecular aggregates and the solid state.A deep understanding of the AIE mechanism is critical for the rational development of AIEgens.In this work,the“state-crossing from a locally excited to an electron transfer state”(SLEET)model is employed to rationalize the AIE phenomenon of two(bi)piperidylanthracenes.According to the SLEET model,an electron transfer(ET)state is formed along with the rotation of the piperidyl group in the excited state of(bi)piperidylan-thracene monomers,leading to fluorescence quenching.In contrast,a bright state exists in the crystal and molecular aggregates of these compounds,as the intermolecular interactions restrict the formation of the dark ET state.This mechanistic understanding could inspire the deployment of the SLEET model in the rational designs of various functional AIEgens.  相似文献   
994.
Sodiumion batteries(SIBs)have attracted intensive attention as promising alternative to lithium-ionbatteries(LIBs)for large scale energy storage systems because of low cost of sodium,similar energy storage mechanism and the reasonable performance.However,it is still a great challenge to search and design a robust structure of anode materials with excellent cycling stability and high rate capability for SIBs.Herein,multilayer porous vanadium nitride(VN)microsheets are synthesized through a facile and scalable hydrothermal synthesis-nitrogenization strategy as an effective anode material for SIBs.The multilayer porous VN microsheets not only offer more active sites for fast Na+insertion/extraction process and short diffusion pathway,but also effectively buffer the volume change of anode due to more space in the multilayer porous structure.The large proportions of capacitive behavior imply that the Na+charge storage depends on the intercalation pseudocapacitive mechanism.The multilayer porous VN microsheets electrodes manifest excellent cycling stability and rate capability,delivering a discharge capacity of 156.1 mA·h/g at 200 mA/g after 100 cycles,and a discharge capacity of 111.9 mA·h/g at 1.0 A/g even after 2300 cycles with the Coulombic efficiency of nearly 100%.  相似文献   
995.
Both electrospinning apparatus and their commercial pro-ducts are extending their applications in a wide variety of fields. However, very limited reports can be found about how to implement an energy-saving process and in turn to reduce the production cost. In this paper, a brand-new type of coaxial spinneret with a solid core and its electrospinning methods are developed. A novel sort of medicated Eudragit/lipid hybrid nanofibers are gene-rated for providing a colon-targeted sustained release of aspirin. A series of characterizations demonstrates that the as-prepared hybrid nanofibers have a fine linear morphology with the aspirin/lipid separated from the matrix Eudragit to form many tiny islands. In vitro dissolution tests exhibit that the hybrid nanofibers are able to effectively prevent the release of aspirin under an acid condition (8.7%±3.4% for the first two hours), whereas prolong the drug release time period under a neutral condition(99.7±4.2% at the se-venth hour). The energy-saving mechanism is discussed in detail. The prepared aspirin-loaded hybrid nanofibers can be further transferred into an oral dosage form for potential application in counte-ring COVID-19 in the future.  相似文献   
996.
The research of photo-responsive materials, with changed absorption and emission under light stimulus, has drawn more and more attention due to their wide applications. However, most of them suffered from the notorious aggregation-caused quenching(ACQ) effect, which often led to the unconspicuous luminescent change in photo-responsive process. To solve this problem, the strategy of combining aggregation-induced emission(AIE) and photochromic properties was utilized, which largely enriched the phenomenon and application of photo-responsive materials. This short review summarized the recent progress of photo-responsive AIE materials with changed UV absorbance or PL phenomenon under UV-irradiation, including the types of molecular structures, internal mechanisms and the practical applications. Also, some outlooks were given on the further exploration of this field at the end of this paper.  相似文献   
997.
As a rising star among porous solid materials, covalent organic frameworks(COFs) with excellent properties including but not limit to facilely controllable structure, high porosity, and multi-chemical functionality represent significant potential for efficient 127Xe/85Kr capture and separation. In this study, through tuning the length of the organic ligands, two-dimensional(2D) COF mate-rials with identical connection group but different pore properties, denoted as ATFG-COF and TpPa-COF with AA-stacking model and TpBD-COF with AB-stacking model were synthesized and tested for Kr and Xe adsorption for the first time. Adsorption measurements indicate that the narrower pore apertures and higher porosity are conducive for COF materials to capture Xe and Kr. Furthermore, the Henry's constant, isosteric heat of adsorption(Qst), and ideal adsorbed solution theory(IAST) selectivity of ATFG-COF, the pore size of which is closest to the kinetic diameter of the Xe atom(0.41 nm) among 2D COF materials, were carried out based on the single component sorption isotherms. The results illustrate that the high isosteric heat values of Xe/Kr adsorption on ATFG-COF are 25 and 16 kJ/mol at room temperature, respectively. Henry's law predicts that the selectivity factor of Xe to Kr is 6.07, consistent with the adsorption selectivity(ca. 6) calculated based on the IAST.  相似文献   
998.
A variety of DNA-based probes are utilized for the detections of multiple analytes and DNA nanotechnology has been thriving for recent decades and achieving numerous nanostructures,mainly focusing on DNA morphology modulation and multifunctional systems engineered into to the complicated works.Among the numerous detections,fluorescence method is a non-invasive,highly selective and sensitive means for varieties of applications,but their emissions are often compromised by the aggregation-caused quenching(ACQ)effect,which weakens their applications.The aggregation induced emission luminogens(AIEgens)are created with non emissive or weakly emissive in a low concentration but emit strong fluorescence in a high concentration with aggregated states.Herein,numerous functionalized AIEgens have been emerged and used for detection and imaging and DNA-modified AIEgen probes are introduced.In this vein,here we report the progress on DNA-modified AIEgen probes in recent years and highlight their conjugation strategies including covalent bonding,electrostatic interaction and their applications of biosensing.Moreover,multiple DNA strands are needed to introduce into the DNA-modified AIEgen probes for more purposes.At the end,some challenges are mentioned to discuss the new trend of DNA-modified AIEgen probes.  相似文献   
999.
The development of fluorescent nanocrystals based on organic small molecules is of great importance in bioimaging due to the merits of easy modification,high brightness and excellent photostability,however suffering from the emission-detrimental aggregation-caused quenching(ACQ)effect.Herein,we successfully designed and synthesized an AIE-active di(N,N-dimethylaniline)-dibenzofulvene(named as NFTPE),which exhibits the crystallization-induced emission enhancement(CIEE)effect.Interestingly,two types of yellow-and orange-emissive crystals for NFTPE were obtained,exhibiting aggregation microenvironment-dependent emission tuning in the solid state.Single-crystal analysis and density functional theory(DFT)calculations reveal that different aggregation microenvironments result in the distinct molecular conformation for various emission.Excitingly,the crystallization of NFTPE in an aqueous solution under the assistance of amphiphilic PEG polymer matrices could be monitored in situ by the fluorescence changes,facilitating the preparation of NFTPE nanocrystals(NFTPE-NCs)by adjusting the aggregation microenvironment.The obtained NFTPE-NCs exhibit the superior performance in cell imaging in respect to high brightness,photostability,and biocompatibility,thus demonstrating the potential in bioimaging applications.  相似文献   
1000.
The Co3O4 decorated TiO2 nanotube arrays(NTAs) coatings are fabricated by the combination of anodization and impregna-ting methods. It is found that the introduction of Co3O4 can reduce the diffraction intensity of (101) plane of the TiO2 and accelerate the separation of photogenerated electron/hole pairs. In addition, the open circuit potential(OCP) and the corrosion potential of 304 stainless steel(304SS) with or without Co3O4 decorated TiO2 NTAs were measured under visible light, which indicated the 304SS coupled with Co3O4 decorated TiO2 NTAs had better anticorrosion performance than that of the 304SS or the 304SS coupled with pure TiO2 NTAs. The enhancement of the cathodic protection performance of the Co3O4 decorated TiO2 NTAs can be ascribed to the matched energy levels and strong interaction between Co3O4 and TiO2 NTAs, and the improvement of light absorption.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号